NUMERICAL ANALYSIS

Assignment -2 (week 2)
Total Marks - 25
Posted on - 31/7/2017 (Monday);
To be submitted on or before-9/8/2017 (Wednesday), 23.59 hours. Problems on

- Lagrange interpolation polynomial
- Divided difference interpolation polynomial
- error in interpolation

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Let $f(x)=\ln x$. Given the table of values

x	0.4	0.5	0.7	0.8
$f(x)$	-0.916291	-0.693147	-0.356675	-0.223144

and the true value of $\ln (0.6)=-0.510826$, find the Lagrange interpolation polynomial of degree 3 that interpolates $f(x)$ at $\left(x_{i}, f\left(x_{i}\right)\right), i=0,1,2,3$.
Fill in the answers in the blanks below.
(a) $L_{0}(0.6)=$ \qquad (b) $L_{1}(0.6)=$ \qquad —,
(c) $L_{2}(0.6)=$ \qquad (d) $L_{3}(0.6)=$ \qquad
(e) $\ln (0.6)=$ \qquad
(f) In the interval $(0.4,0.8)$, if $A>E(0.6)>B$, then
$A=$ \qquad ; $B=$ \qquad where $E(0.6)$ is $\left|\ln (0.6)-p_{3}(0.6)\right|$.

Show your work for the solution of problem 1 in the space provided below.
2. Consider the interpolating polynomial $p_{2}(x)$ of degree at most 2 that interpolates f at the nodes $x_{0}=1, x_{1}=2, x_{2}=3$, where $p_{2}=3+4(x-1)+1(x-1)(x-2)$. Obtain the first order divided difference $f\left[x_{1}, x_{2}\right]$ and also $f[3]$.
Fill in the blanks:
(a) The first order divided difference $f\left[x_{1}, x_{2}\right]$ is
(b) $f[3]=$ \qquad (3 marks)

Show your work for the solution of problem 2 in the space provided below.
3. The function e^{x} is tabulated at intervals of 0.01 between $x=0$ and $x=1$. Find an upper bound on the error (E) incurred by using linear interpolation in this table. Fill in the blank:
\qquad
$|E| \leq$.
(4 marks)

Show your work for the solution of problem 3 in the space provided below.

4. You are given the following information about $f(x)$| x | 0 | 1 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 2 | 1 | 0 | 1 |

(i) obtain Newton's divided difference interpolation polynomial that interpolates $f(x)$ at $x_{i}, i=0,1,2,3$.
(ii) Assume we know that the $4^{\text {th }}$ derivative satisfies $\left|f^{(4)}(x)\right| \leq 10$ for $x \in[0,4]$. Find the estimate for $|E|=\left|f(2)-p_{3}(2)\right|$.
Fill in the blanks:
(a) If $f(x) \simeq p_{3}(x)$, then $p_{3}(2)$ is \qquad .
(b) $|E| \leq$ \qquad (6 marks)

Show your work for the solution of problem 4 in the space provided below.
5. Use the divided-difference interpolation polynomial to estimate $f(3)$ from the following table

x	$x_{0}=0$	$x_{1}=1$	$x_{2}=2$	$x_{3}=4$	$x_{4}=5$	$x_{5}=6$
$f(x)$	1	14	15	5	6	19

Fill in the blanks:
(a) $f(3) \simeq$ \qquad
(b) $f\left[x_{0}, x_{1}, x_{2}\right]=$

Show your work for the solution of problem 5 in the space provided below.

