NUMERICAL ANALYSIS Assignment -2 (week 2) Total Marks - 25 Posted on - 31/7/2017 (Monday);

To be submitted on or before-9/8/2017 (Wednesday), 23.59 hours.

Problems on

- Lagrange interpolation polynomial
- Divided difference interpolation polynomial
- error in interpolation

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem **which you will have to show** in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Let f(x) = lnx. Given the table of values

	x	0.4	0.5	0.7	0.8
$\int f$	f(x)	-0.916291	-0.693147	-0.356675	-0.223144

and the true value of ln(0.6) = -0.510826, find the Lagrange interpolation polynomial of degree 3 that interpolates f(x) at $(x_i, f(x_i))$, i = 0, 1, 2, 3. Fill in the answers in the blanks below.

(a) $L_0(0.6) =$ ______, (b) $L_1(0.6) =$ ______, (c) $L_2(0.6) =$ ______, (d) $L_3(0.6) =$ ______, (e) ln(0.6) = ______, (f) In the interval (0.4, 0.8), if A > E(0.6) > B, then A = ______; B = ______, where E(0.6) is $|ln(0.6) - p_3(0.6)|$. (8 marks)

Show your work for the solution of problem 1 in the space provided below.

2. Consider the interpolating polynomial p₂(x) of degree at most 2 that interpolates f at the nodes x₀ = 1, x₁ = 2, x₂ = 3, where p₂ = 3 + 4(x - 1) + 1(x - 1)(x - 2). Obtain the first order divided difference f[x₁, x₂] and also f[3]. Fill in the blanks:
(a) The first order divided difference f[x₁, x₂] is _____.
(b) f[3] = _____. (3 marks)

Show your work for the solution of problem 2 in the space provided below.

3. The function e^x is tabulated at intervals of 0.01 between x = 0 and x = 1. Find an upper bound on the error (E) incurred by using linear interpolation in this table. Fill in the blank: $|E| \leq$ (4 marks)

Show your work for the solution of problem 3 in the space provided below.

4. You are given the following information about $f(x) \begin{bmatrix} x & 0 & 1 & 3 & 4 \\ \hline f(x) & 2 & 1 & 0 & 1 \end{bmatrix}$

(i) obtain Newton's divided difference interpolation polynomial that interpolates f(x) at x_i , i = 0, 1, 2, 3. (ii) Assume we know that the 4th derivative satisfies $|f^{(4)}(x)| \le 10$ for $x \in [0, 4]$. Find the estimate for $|E| = |f(2) - p_3(2)|$. Fill in the blanks: (a) If $f(x) \simeq p_3(x)$, then $p_3(2)$ is _____. (b) $|E| \le$ _____. (6 marks)

Show your work for the solution of problem 4 in the space provided below.

5. Use the divided-difference interpolation polynomial to estimate f(3) from the following table

x	$x_0 = 0$	$x_1 = 1$	$x_2 = 2$	$x_3 = 4$	$x_4 = 5$	$x_5 = 6$
f(x)	1	14	15	5	6	19

Fill in the blanks: (a) $f(3) \simeq$ _____.

(b) $f[x_0, x_1, x_2] =$ _____, (4 marks)

Show your work for the solution of problem 5 in the space provided below.